Ambient seismic noise monitoring of active landslides and rock columns prone to failure

Partners:

- **ISTerre (France):** S.R Carrière, J. Valentin, E. Larose, D. Jongmans, L. Baillet, P. Bottelin
- **UNIL (Switzerland):** M. Jaboyedoff, M. Franz
1. Problematic

Ambient noise monitoring, a technique widely used today.

Civil engineering

Example of a structure – Autocad

Volcanology

Piton de la Fournaise
Volcano – Reunion Island

Earthquakes

San Andreas fault line - California

What about landslides and rock columns?
1. Problematic

Ambient noise monitoring

Rock column

Active landslide

Fundamental frequency

Relative velocity changes

JAG 2015 – S.R Carrière (ISTerre – France)
1. Problematic

- **Rockfall**
 - Limestone
 - Seismic sensor

- **Earthflow**
 - Clay

(Levy et al., 2011)

(Mainsant et al., 2012)
2. Landslides monitoring

Ambient noise monitoring applied to landslides:

- Ambient noise
- Daily cross correlation
- Processing of dV/V
- Characterize the changes

 piping image:

- Seismic sensor
- Acquisition system

JAG 2015 – S.R Carrière (ISTerre – France)
2. Landslides monitoring

The «Pont-Bourquin» landslide:

Geology:
• Upper part: black shales
• Middle part: flysch
• Lower part: gypsum dolomite

Characteristics of the landslide:
• 100 m long
• 30-50 m wide
• Fast displacements (around 5m a year)
• Evolves sometimes in earthflow (2007 and 2010)

Equipped with:
• 8 seismic sensors 1C
• 2 extensometers
• 1 weather station
• 1 piezometer

JAG 2015 – S.R Carrière (ISTerre – France)
2. Landslides monitoring

The case of « Pont-Bourquin »:

Daily dV/V (%) – Sensors 2–6 – Bandwidth [10–12Hz]

NO DATA

Earthflow

Weekly rainfall (mm)

Weekly Temperature (°C)

Pillon road

20 m

Seismic sensor
Electrodes
Extensometer
Piezometer

Weather station

Pont-Bourquin landslide - Switzerland

JAG 2015 – S.R Carrière (ISTerre – France)
3. Rock columns monitoring

Ambient noise monitoring applied to prone to fall rock columns:

- Ambient noise
- Spectral analysis
- Fundamental frequencies of the column
- Characterize the changes

JAG 2015 – S.R Carrière (ISTerre – France)
3. Rock columns monitoring

The « Les Arches » site:

Limestone beds

Altitude (m)

1880
1870
1860
1850
1840
10 m

JAG 2015 – S.R Carrière (ISTerre – France)
3. Rock columns monitoring

The case of « Les Arches »:

(Daily frequency variations due to thermal forcing)

(Bottelin et al., 2013)
3. Rock columns monitoring

The case of « Les Arches »:

Yearly variations with increase of the fundamental frequency during winter

(Bottelin et al., 2013)
4. Conclusion

No activation

- Rock column
 - Daily and yearly f_0 fluctuations
 - Landslide
 - Seasonal dV/V fluctuation

Activation

- Rock column
 - Drop of f_0 before activation
 - Landslide
 - Drop of dV/V before activation

1: F_0 and dV/V seem to be precursors to landslide and rock column activation

2: Clear dependance of the seismic properties of the soil to the environmental conditions (temperature and hydrology)

Perspectives

Isolate variations due to mechanical changes from variations due to environmental fluctuations

JAG 2015 – S.R Carrière (ISTerre – France)
Thank you for your attention

Questions?
Landslide monitoring

Ambient noise monitoring applied to landslides:

Ambient noise

Frequency equalization + Amplitude normalization

Daily cross correlation + Reference correlation

Stretching method

Doublet method

Daily dV/V and DC estimation
Rock columns monitoring

Ambient noise monitoring applied to rock columns:

Ambient noise

Windowing Clipping Apodisation

Spectral Analysis (FFT)

Spectral Analysis (PSD)